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Probability Theory Review

• Definitions

Random experiment: an experiment whose result is not certain in advance
(e.g., throwing a die)

Outcome: the result of a random experiment

Sample space: the set of all possible outcomes
(e.g., {1,2,3,4,5,6})

Event: a subset of the sample space
(e.g., obtain an odd number in the experiment of throwing a die = {1,3,5})

• Axioms of Probability

(1) 0 ≤ P(A) ≤ 1

(2) P(S) = 1 (S is the sample space)

(3) If A1, A2, ...,An are mutually exclusive events (i.e.,P(Ai ∩ A j ) = 0), then:

P(A1 ∪ A2 ∪ . . .∪ An) =
n

i=1
Σ P(Ai )

Note:we will denoteP(A∩C) as P(A, B))

• Other laws of probability

P(A) = 1 − P(A)

P(A ∪ B) = P(A) + P(B) − P(A, B)

P(A) = P(A, B) + P(A, B) (law of total probability)
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• Prior or Unconditional Pr obability

- It is the probability of an event prior to arrival of any evidence.

P(Cavity)=0.1 means that in the absence of any other information,
there is a 10% chance that the patient is having a cavity.

• Posterior or Conditional Probability

- It is the probability of an event given some evidence.

P(Cavity/Toothache)=0.8 means that there is an 80% chance that
the patient is having a cavity given that he is having a toothache.

- Conditional probabilities can be defined in terms of unconditional probabilities:

P(A/B) =
P(A, B)

P(B)
=

P(A, B)

P(B)

- The following formulas can be derived (chain rule):

P(A, B) = P(A/B)P(B) = P(B/A)P(A)

- Using the above formula, we can rewrite the law of total probability as follows:

P(A) = P(A, B) + P(A, B) = P(A/B)P(B) + P(A/B)P(B)

• Bayes theorem

- Using the conditional probability formula leads to theBayes rule:

P(A/B) =
P(B/A)P(A)

P(B)
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Example:consider the probability ofDiseasegiven Symptom

P(Disease/Symptom) =
P(Symptom/Disease)P(Disease)

P(Symptom)

P(Symptom) = P(Symptom/Disease)P(Disease) + P(Symptom/Disease)P(Dis-
ease)

- The general form of the Bayes rule is given by:

P(Ai /B) =
P(B/Ai )P(A)

P(B)

where A1, A2, ..., An is a partition of mutually exclusive events andB is any
ev ent

P(B) =
n

j=1
Σ P(B/A j )P(A j ) (law of total probability)

• Independence

- Two events A and B are independent iff:

P(A, B) = P(A)P(B)

- From the above formula, we can also show that:

P(A/B) = P(A) and P(B/A) = P(B)

- A and B are conditionally independent given C iff :

P(A/B,C) = P(A/C)

- The following formula can be shown easily:

P(A, B,C) = P(A/B,C)P(B/C)P(C)
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• Random variables

- In many experiments, it is easier to deal with a summary variable than with the
original probability structure.

Example:in an opinion poll, we ask 50 people whether agree or disagree with a
certain issue.

* Suppose we record a "1" for agree and "0" for disagree.
* The sample space for this experiment has 250 elements.
* Suppose we are only interested in the number of people who agree.
* Define the variableX=number of "1"’s recorded out of 50.
* Easier to deal with this sample space (has only 50 elements).

- A random variable (r.v.) is the value we assign to the outcome of a random
experiment (i.e., a function that assigns a real number to each event).
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- How is the probability function of the random variable is being defined from the
probability function of the original sample space?

(1) Suppose the sample space isS = < s1, . . . ,sn >

(2) Suppose the range of the random variableX is < x1, . . . ,xm >

(3) We will observe X = x j if f the outcome of the random experiment is an
sj ∈ S such thatX(sj ) = x j , i.e.,

P(X = x j ) = P(sj ∈S: X(sj ) = x j

- A discrete r.v. can assume only a countable number of values (e.g., consider the
experiment of throwing a pair of dice):

X="sum of dice"

e.g., X = 5 corresponds toA5={(1,4),(4,1),(2,3),(3,2)}

P(X = x) = P(Ax) =
s:X(s)=x

Σ P(s) or

P(X = 5) = P((1, 4))+ P((4, 1))+ P((2, 3))+ P((2, 3))= 4/36= 1/9

- A continuous random variable can assume a range of values (e.g., most sensor
readings).

• Why should we care about r.v.?

- Every sensor reading is a random variable (e.g., thermal noise, etc.)

- Many things in the real world can be appropriately viewed as random events
(e.g., start time of lecture).

- There is some degree of uncertainty in almost everything we do.

- Some synonymous terms for "random" arestochasticandnon-deterministic
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• Probability distrib ution function (PDF)

- With every r.v., we associate a function calledprobability distribution function
(PDF) which is defined as follows:

F(x) = P(X ≤ x)

- Some properties of the PDF are:

(1) 0 ≤ F(x) ≤ 1

(2) F(x) is a non-decreasing function ofx

- If X is discrete, its PDF can be computed as follows:

F(x) = P(X ≤ x) =
x

k=0
Σ P(X = k) =

x

k=0
Σ p(k)

F(0) = P(X ≤ 0) = P(X = 0) = 1/8

F(1) = P(X ≤ 1) = P(X = 0) + P(X = 1) = 1/2

F(2) = P(X ≤ 2) = P(X = 0) + P(X = 1) + P(X = 2) = 7/8

F(3) = P(X ≤ 3) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) = 1
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• Probability mass (pmf) or density function (pdf)

- Thepmfof a discrete r.v. X assigns a probability for each possible value ofX:

p(x) = P(X = x) for all x

Important note: given two r.v.’ s, X and Y, their pmf or pdf are denoted as
pX(x) and pY(y); for convenience, we will drop the subscripts and denote them
as p(x) and p(y), however, keep in mind that these functions are different !

- Thepdfof a continuous r.v. X satisfies

F(x) =
x

−∞
∫ p(t)dt for all x

- Using the above formula it can be shown that:

p(x) =
dF

dx
(x)

- Some properties of the pmf and pdf:

x
Σ p(x) = 1 (pmf)

P(a < X < b) =
b

k=a
Σ p(k) (pmf)

∞

−∞
∫ p(x)dx = 1 (pdf)

P(a < X < b) =
b

a
∫ p(t)dt (pdf)
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Example:the GaussianpdfandPDF

• The joint pmf and pdf

Discrete r.v.

- For n random variables, the jointpmf assigns a probability for each possi-
ble combination of values:

p(x1, x2, . . . ,xn) = P(X1 = x1, X2 = x2, . . . ,Xn = xn)

Important note: the joint pmf’s or pdf ’s of the r.v.’ s X1, X2, ..., Xn andY1,
Y2, ..., Yn are denoted as pX1X2

...Xn
(x1, x2, . . . ,xn) and

pY1Y2
...Yn

(y1, y2, . . . ,yn); for convenience, we will drop the subscripts and
denote them asp(x1, x2, . . . ,xn) and p(y1, y2, . . . ,yn), keep in mind, how-
ev er, that these are two different functions.

- Specifying the jointpmf requires an enormous number of values (e.g.,kn

assumingn random variables where each one can assume one ofk discrete
values).

P(Cavity,Toothache) is a 2 x 2 matrix

tab (%) allbox center;
c s s l n n. Joint Probability %Toothache%not Toothache Cav-
ity%0.04%0.06 not Cavity%0.01%0.89
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- The univariatepmf is related to the jointpmfby:

p(x) =
y
Σ p(x, y) (marginalization)

Continuous r.v.

- For n random variablesX1, ..., Xn, the jointpdf is given by:

p(x1, x2, . . . ,xn) ≥ 0

- The univariatepmf is related to the jointpmfby:

p(x) =
∞

−∞
∫ p(x, y)dy (marginalization)

• Some interesting results using the joint pmf/pdf

- The conditional pdf can be derived from the joint pdf:

p(y/x) =
p(x, y)

p(x)
or p(x, y) = p(y/x)p(x)

- The law of total probability:

p(y) =
x
Σ p(y/x)p(x)

- Knowledge about independence between r.v.’ s is very powerful since it simpli-
fies things a lot, e.g., ifX andY are independent, then:

p(x, y) = p(x) p(y)

- The chain rule of probabilities:

p(x1, x2, . . . ,xn) = p(x1/x2, . . . ,xn)p(x2/x3, . . . ,xn). . . p(xn−1/xn)p(xn)
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• Why is the joint pmf (or pdf) useful?

- Any other probability relating to the random variables can be calculated.

P(B) = P(B, A) + P(B, A) (marginalization)
(we can compute the probability of any r.v. from its joint probability)

- Here is how to computeP(A/B) (conditional probability):

P(A/B) =
P(A, B)

P(B)
=

P(A, B)

P(A, B) + P(A, B)

• Normal (Gaussian) distribution

- The Gaussian pdf is defined as follows:

p(x) =
1

� √ 2�
exp[

(x − � )2

2� 2
]

where� is the mean and� the standard deviation.

- The multivariate Gaussian (x is a vector) is defined as follows:

p(x) =
1

(2� )d/2|Σ|1/2
exp[−

1

2
(x − � )tΣ−1(x − � )]

where� is the mean andΣ the covariance matrix.

- Linear combinations of jointly Gaussian distributed variables follow a
Gaussian distribution:

if y = Atx, then p(y) ˜ N(At � , AtΣA)

- Whitening transformation:
Aw = ΦΛ−1/2

if y = At
wx, then p(y) ˜ N(At

w � , I ), that is,Σw = I

where the columns ofΦ are the (orthonormal) eigenvectors ofΣ, and Λ is a diag-
onal matrix corresponding to the eigenvalues ofΣ
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- Shape and parameters of Gaussian distribution:

d + d(d + 1)/2 parameters, shape determined byΣ
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- Mahalanobisdistance:
r 2 = (x − � )tΣ−1(x − � )

- The multivariate normal distribution for independentvariables becomes:

p(x) =
i

Π
1

√ 2��� 2
i

exp[
(x − � i )

2

2� 2
i

]

<figure notes>
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• Expected value

- The expected value for a discrete r.v. X is given by

E(X) =
x
Σ xp(x)

Example:Let X denote the outcome of a die roll

E(X) = 1 1/6 + 2 1/6 + 3 1/6 + 4 1/6 + 5 1/6 + 6 1/6 = 3. 5

- The "sample" meanx for a r.v. X is given by

x =
1

n

n

i=1
Σ xi

wherexi denotes thei-th measurement ofX.

- The mean and the expected value are related by

E(X) =
n−>∞
lim x

- The expected value for a continuous r.v. is giv en by

E(X) =
∞

−∞
∫ xp(x)dx

Example: E(X) for the Gaussian is� .
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• Properties of the expected value operator

- The expected value of a functiong(X) is giv en by:

E(g(X)) =
x
Σ g(x)p(x) (discrete case)

E(g(X)) =
∞

−∞
∫ g(x)p(x)dx (continuous case)

- Linearity property

E(af (X) + bg(Y)) = aE( f (X)) + bE(g(Y))

• Variance and standard deviation

- The varianceVar(X) of a r.v. X is defined by

Var(X) = E((X − � )2), where� = E(X)

- The "sample" varianceVar for a r.v. X is given by

Var(X) =
1

n − 1

n

i=1
Σ(xi − x)2

- The standard deviation 	 of a r.v. X is defined by

	 = √ Var(X)

Example:The variance of the Gaussian is	 2
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• Covariance

- The covariance of two r.v. X andY is defined by:

Cov(X,Y) = E[(X − 
 X)(Y − 
 Y)]

where
 X = E(X) and 
 Y = E(Y)

- The correlation coefficient � XY betweenX andY is given by:

� XYa =
Cov(X,Y)
�

X
�

Y

- The "sample" covariance matrix is given by:

Cov(X,Y) =
1

n − 1

n−1

i=1
Σ (xi − x)(yi − y)

• Covariance matrix

- The covariance matrix of 2 random variables is given by:

CXY =




Cov(X, X)

Cov(Y, X)

Cov(X,Y)

Cov(Y,Y)





whereCov(X, X) = Var(X), Cov(Y,Y) = Var(Y)

- The covariance matrix ofn random variables is given as:

CX =







Cov(X1, X1)

Cov(X2, X1)

...

Cov(Xn, X1)

Cov(X1, X2)

Cov(X2, X2)

...

Cov(Xn, X2)

...

...

...

...

Cov(X1, Xn)

Cov(X2, Xn)

...

Cov(Xn, Xn)







whereCov(Xi , X j ) = Cov(X j , Xi ) andCov(Xi , Xi ) ≥ 0

Example:Σ is the covariance matrix of the multivariate Gaussian.
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• Uncorrelated random variables

- X andY are calleduncorrelated, if:

Cov(X,Y) = 0

- X1, X2, ..., Xn are calleduncorrelated, if:

CX = Λ, whereΛ is a diagonal matrix.

• Properties of the covariance matrix

- SinceCX is symmetric, it hasreal eigenvalues≥ 0

- Any two eigenvectors, with different eigenvalues, areorthogonal.

- The eigenvectors corresponding to different eigenvalues define abasis.

• Decomposition of the covariance matrix

- The covariance matrixCX can be decomposed as follows:

CX = ΦΛΦ−1

(1) the columns ofΦ are the eigenvectors ofCX

(2) the diagonal elements ofΛ are the eigenvalues ofCX
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• Tr ansformations between random variables

- SupposeX andY are vectors of random variables:

X =







X1

X2

...

Xn







, Y =







Y1

Y2

...

Yn







which are related through the following transformation:

Y = ΦT X

- The coordinates ofY areuncorrelated:

CY=Λ (i.e.,Cov(Yi ,Y j ) = 0)

- The eigenvalues ofCX become the variances ofYi ’s:

Var(Yi ) = Cov(Yi ,Yi ) =  i

• Moments of a r.v.

- Definition of moments:

mn = E(xn)

- Definition of central moments:

cmn = E((x − � )n)

- Useful moments

m1: mean
cm2: variance
cm3: skewness (measure of asymmetry of a distribution)
cm4: kurtosis (detects heave and light tails and deformations of a distribu-
tion)


