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Probability Theory Review

 Definitions

Random gperiment: angeriment whose result is not certain in adlee
(e.g., thraving a die)

Outcome: the result of a randonxperiment

Sample space: the set of all possible outcomes
(e.g., {1,2,3,4,5,6})

Event: a subset of the sample space
(e.g., obtain an odd number in thg@eriment of thraving a die = {1,3,5})

» Axioms of Probability
(1) 0<s P(A) <1
(2) P(S) =1 (Sis the sample space)
(3) If Aq, Ay, ...,A, are mutually rclusive events (i.e.,P(A; N A;) =0), then:

P(ALL AL LAy = Z P(A)
Note:we will denoteP(A N C) as P(A, B))

» Other laws of probability
P(A) =1-P(A)
P(A [] B) = P(A) + P(B) - P(A, B)

P(A) = P(A, B) + P(A, B) (law of total ppbability)
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* Prior or Unconditional Pr obability
- It is the probability of anwent prior to arval of any evidence.
P(Cavity)=0.1 means that in the absence of any other information,
there is a 10% dhance that the patient is having a cavity
 Posterior or Conditional Probability
- It is the probability of an\ent given some &idence.

P(Cavity/Dothate)=0.8 means that theis an 80% dance that
the patient is having a cavity given that he is having a tobthac

- Conditional probabilities can be defined in terms of unconditional probabilities:

P(A, B) _ P(A B)

"B =5l T R

- The following formulas can be dewrd (chain rule):
P(A, B) = P(A/B)P(B) = P(B/A)P(A)
- Using the abee formula, we can rerite the lav of total probability as follws:

P(A) = P(A, B) + P(A, B) = P(A/B)P(B) + P(A/B)P(B)

» Bayes theoem

- Using the conditional probability formula leads to Beyes rule

P(B/A)P(A)

P(AB) = 55
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Example:consider the probability ddiseasegiven Symptom

P(SymptonDiseas¢P(Diseasé

P(DiseaséSymptom= P(Symptomi

P(Symptom= P(SymptonDiseas¢P(Diseas¢ + P(SymptonDiseas¢P(Dis-
ease

- The general form of the Bayes rule isagi by:

P(B/A)P(A)
P(B)

P(A/B) =

where A;, Ay, ..., A, is a partition of mutually >xlusve erents andB is ary
event

P(B) = % P(B/A;)P(A)) (law of total probability)
j=1

 Independence
- Two events A and B are independertt if
P(A, B) = P(A)P(B)
- From the abwe formula, we can also sivahat:
P(A/B) = P(A) and P(B/A) = P(B)
- A and B are conditionally independenten C iff:
P(A/B,C) = P(A/C)
- The following formula can be sk easily:

P(A, B,C) = P(A/B,C)P(B/C)P(C)



« Random variables

- In mary experiments, it is easier to deal with a summaagiable than with the
original probability structure.

Example:in an opinion poll, we ask 50 people whether agree or disagree with a
certain issue.

* Suppose we record a "1" for agree and "0" for disagree.

* The sample space for thisperiment has®? elements.

* Suppose we are only interested in the number of people who agree.
* D efine the ariableX=number of "1"s recorded out of 50.

* Easier to deal with this sample space (has only 50 elements).

- A random wariable (rv.) is the alue we assign to the outcome of a random
experiment (i.e., a function that assigns a real number to @ant).e
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- How is the probability function of the randonawable is being defined from the
probability function of the original sample space?

(1) Suppose the sample spac8i<s,...,S,>
(2) Suppose the range of the randamableX is < Xq, ..., Xy >

(3) We will obsene X = x; iff the outcome of the randomxperiment is an
s; O Ssuch thatX(s;) = x;, i.e.,

P(X = x;) = P(s; S X(s)) = X

- A discrete wv. can assume only a countable numberaitigs (e.g., consider the
experiment of thraving a pair of dice):

X="sum of dice"
e.g., X =5 corresponds tAs={(1,4),(4,1),(2,3),(3,2)}

PX=X=P(A)= 3 P(Sor

P(X =5) = P((1,4))+ P((4, 1))+ P((2, 3))+ P((2, 3))= 4/36=1/9
- A continuous randomariable can assume a range afues (e.g., most sensor
readings).
* Why should we car aout r.v.?
- Every sensor reading is a random@riable (e.g., thermal noise, etc.)

- Mary things in the real wld can be appropriately wied as randomvents
(e.g., start time of lecture).

- There is some dgee of uncertainty in almosterything we do.

- Some synogmous terms for "random" astodasticandnon-deterministic
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 Probability distrib ution function (PDF)

- With every r.v., we associate a function callptbbability distritution function
(PDF) which is defined as folis:

F(x) =P(X <Xx)
- Some properties of the PDF are:
(1)0sF(x) =1
(2) F(x) is a ron-decreasing function of

- If X is discrete, its PDF can be computed as Wato

H@ZHXS@ZéﬁMZ@Zé#W)

1
probability
density 7/8 o
probability
1/2 -_—
1/8 1/8——
0 1 2 3 0 1 2 3

F(0)= P(X <0)=P(X =0)=1/8
F(1)=P(X<1)=P(X=0)+P(X =1)=1/2
F(2)=P(X<2)=P(X=0)+P(X=1)+P(X =2)=7/8

F3)=P(X<3)=P(X=0)+P(X=1)+P(X=2)+P(X=3)=1
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 Probability mass (pmf) or density function (pdf)
- Thepmfof a discrete.v. X assigns a probability for each possibédue of X:
p(x) = P(X = x) for all x
Important note: given two rv.’s, X andY, their pmf or pdf are denoted as
px (X) and py(y); for corvenience, we will drop the subscripts and denote them

as p(x) and p(y), havever, keep in mind that these functions ardetént !

- Thepdfof a continuous.v. X satisfies

X

F(x) = I p(t)dt for all x

- Using the abee formula it can be shan that:

dF
p(x) = dx (X)
- Some properties of the pmf and pdf:

% p(x) =1 (pmf)

b
Pla<X<b)= 2 p(k) (pmf)

k=a

J POgdx =1 (pdf)

b
P(a< X <h) :J’ p(t)dt (pdf)
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Examplethe GaussiapdfandPDF

Ax(x) Py(x)

* The joint pmf and pdf

Discrete .

- For n random wariables, the joinpmfassigns a probability for each possi-
ble combination of &lues:

P(X1, X5, ..., X,) = P(X1 = X, X5 = Xo, ..., X = Xp)

Important note: the joint pmf’s or pdf’s of the tv.'s X4, X,, ..., X, andYy,
Y, .., Y, are denoted as pxx,.x (X1, Xz, ...,Xp) and
Py,v,-v, (Y1, Y2, . .., ¥n); for corvenience, we will drop the subscripts and
denote them ap(Xxq, X5, ...,X,) and p(y1, Y2, --.,Yn), keep in mind, ha-
eva, that these are wvdfferent functions.

- Specifying the jointpmfrequires an enormous number aflues (e.g.k"
assumingn random \ariables where each one can assume orkedifcrete
values).

P(Cavity, Toothachgis a 2 x 2 natrix

tab (%) allbox center;
c s s | n n Jint Probability %®othache%not dothache Ca
ity%00.04%0.06 not Gaty%0.01%0.89
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- The unvariate pmfis related to the joimfimfby:
p(x) = 2> p(x,y) (mamginalization
y

Continuous K.

- For nrandom wariablesXy, ..., X,,, the jointpdfis given by:
p(xl’ X2y 1Xn) 20

- The unvariate pmfis related to the joimimfby:

p(x) = I p(x, y)dy (mamginalization

« Some inteesting results using the joint pmf/pdf
- The conditional pdf can be deed from the joint pdf:

_ P(x,y)

Py = Fs

or p(x, y) = p(y/x) p(x)
- The law of total probability:
p(y) = § P(Y/X) p(X)

- Knowledge about independence betwesrsiis very powverful since it simpli-
fies things a lot, e.g., K andY are independent, then:

p(x, y) = p(x) p(y)

- The chain rule of probabilities:

P(X1, X2, . .+, Xn) = P(X1/ X2, . . ., Xn) P(Xa/ X3, - . ., Xn). . . P(Xn-1/Xn) P(Xn)
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* Why is the joint pmf (or pdf) useful?
- Any aher probability relating to the randoranables can be calculated.

P(B) = P(B, A) + P(B, A) (maminalization)
(we can compute the probability ofyanv. from its joint probability)

- Here is hav to computeP(A/B) (conditional probability):

P(A,B) _ P(A, B)

PINB)= "5@B) ~ P(A B) + P(A B)

* Normal (Gaussian) distribution

- The Gaussian pdf is defined as falk

1 (X = w)?
P0) = oV2r exl 202

]

whereu is the mean and the standard deation.

- The multvariate Gaussianx(is a \ector) is defined as follgs:

1 1 -
p(x) = (2n) 2[5 exf- > (X =)' =7 (x = p)]

whereu is the mean angl the caovariance matrix.
- Linear combinations of jointly Gaussian distriéd \ariables follev a
Gaussian distriltion:
if y = Alx, thenp(y) ~ N(Aly, A'ZA)

- Whitening transformation:
A, = PAY2

if y = Alx, thenp(y) ~ N(ALu, 1), that is,Z,, = |

where the columns @b are the (orthonormal) eigeectors ofZ, and A is a diag-
onal matrix corresponding to the eigdies ofZ
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- Shape and parameters of Gaussian distion:
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- Mahalanobisdistance:
r?=(x-u)'ZH(x - )

- The multvariate normal distribtion forindependenvariables becomes:

AV
p(x) =N exqu

1 —— ]
: '\/Eﬂ'O'iz 20-|2

<figure notes>
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» Expected \alue

- The pected alue for a discreteu. X is given by
E(X) =2 xp(X)
X
Example:Let X denote the outcome of a die roll

E(X)=11/6+216+316+416+516+616=3.5

- The "sample" mear for a rv. X is given by

S
M=

X
1

X
|

wherex; denotes thé-th measurement of.
- The mean and thexpected alue are related by

E(X) = lim X

n—>o00

- The &pected alue for a continuousu is gven by
(0]
E(X) = J’ Xp(X)dx

Example: EX) for the Gaussian is.
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» Properties of the expectedalue operator

- The pected alue of a functiorg(X) is gven by:

E(g(X)) = > g(x) p(x) (discrete case)

00

E(g(X)) = I g(x) p(x)dx (continuous case)

- Linearity property

E(af (X) +bg(Y)) = aE(1 (X)) + bE(g(Y))

 Variance and standard deiation
- The varianceVar(X) of ar.v. X is defined by
Var(X) = E((X - ©)?), whereu = E(X)

- The "sample" arianceVar for a rv. X is given by

(% = X)°

M>s

_ 1
Var(X) = m
|

1

- The standard dgationo of a rv. X is defined by

o =yVvar(X)

Example:The ariance of the Gaussiand$
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 Covariance
- The cwariance of tvo r.v. X andY is defined by:
Com(X,Y) = E[(X = ux)(Y = py)]
whereuy = E(X) and uy = E(Y)
- The correlation coéitient pyy betweenX andyY is given by:

_ Cov«X,Y)

Pxya =
OxOy

- The "sample" ceariance matrix is gien by:

CouX,Y) = ﬁ g(xi =Xy - Y)

e Covariance matrix

- The cwariance matrix of 2 randomaviables is gien by:

_ Co\(X,X) CouX,Y)D
XY= CoY,X) CouY,Y)H

whereCov X, X) =Var(X), CowuY,Y) =Var(Y)

- The cwariance matrix o random wariables is gien as:

EpOV(Xl, Xl) COV(X]_, Xz) CO\(X]_, Xn) ]
ECO\/()(z, X]_) COV(X21 XZ) COV(XZ’ Xn) U
Cx=10 O
[CoM Xy, X1) CoUXp, X)) ... CouX,, X,) O

whereCou(X;, X;j) = CovX;, X;) and CovX;, X;) =0

Example:Z is the coariance matrix of the multeriate Gaussian.
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» Uncorrelated random \ariables
- X andY are calleduncorrelated if:
CovX,Y) =0
- X1, X5, ..., X, are calleduncorrelated if:

Cx =/, whereAis a diagonal matrix.

* Properties of the cwariance matrix
- SinceCy is symmetric, it hageal eigervalues= 0
- Any two dagervectors, with diferent eigewmalues, areorthogonal

- The eigemectors corresponding to drent eigevalues define dasis

» Decomposition of the ceariance matrix
- The cwariance matrixXCyx can be decomposed as fols
Cx = PAD™!
(1) the columns of are the eigarectors ofCyx

(2) the diagonal elements Afare the eigaralues ofCy
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e Tr ansformations between random wariables

- SupposeX andY are \ectors of randomariables:

0X10 Y10
X, 0 Oy, O
X=0°‘0 Y=0°Q
D--- D D---D
0X,, O oY, O

which are related through the faNng transformation:
Y=0"X
- The coordinates of areuncorrelated
Cyv=A (i.e.,CouY;, Y;) = 0)
- The eigemalues ofCy become theariances of;’s:

Var(Yi) = COV(Yi,Yi) = A

 Moments of a rv.
- Definition of moments:
m, = E(X")
- Definition of central moments:
cm, = E((x— )"

- Useful moments

my: mean

cmy: variance

cmg: skewness (measure of asymmetry of a disiidm)

cmy: kurtosis (detects hga and light tails and deformations of a distrib
tion)



