# Probability Theory Review 

## - Reading Assignments

R. Duda, P. Hart, and D. Stork, Pattern Classification, John-Wiley, 2nd edition, 2001 (appendix A.4, hard-copy).
"Everything I need to know about Probability" (on-line).

## Probability Theory Review

## - Definitions

Random experiment: an experiment whose result is not certain in advance (e.g., throwing a die)

Outcome: the result of a random experiment
Sample space: the set of all possible outcomes
(e.g., $\{1,2,3,4,5,6\}$ )

Event: a subset of the sample space
(e.g., obtain an odd number in the experiment of throwing a die $=\{1,3,5\}$ )

## - Axioms of Probability

(1) $0 \leq P(A) \leq 1$
(2) $P(S)=1(S$ is the sample space $)$
(3) If $A_{1}, A_{2}, \ldots, A_{n}$ are mutually exclusive events (i.e., $P\left(A_{i} \cap A_{j}\right)=0$ ), then:

$$
P\left(A_{1} \cup A_{2} \cup \cdots \cup A_{n}\right)=\sum_{i=1}^{n} P\left(A_{i}\right)
$$

Note: we will denote $P(A \cap C)$ as $P(A, B))$

## - Other laws of probability

$$
\begin{gathered}
P(A)=1-P(\bar{A}) \\
P(A \cup B)=P(A)+P(B)-P(A, B) \\
P(A)=P(A, B)+P(A, \bar{B})(\text { law of total probability })
\end{gathered}
$$

## - Prior or Unconditional Probability

- It is the probability of an event prior to arrival of any evidence.
$P($ Cavity $)=0.1$ means that in the absence of any other information, there is a $10 \%$ chance that the patient is having a cavity.


## - Posterior or Conditional Probability

- It is the probability of an event given some evidence.
$P($ Cavity/Toothache $)=0.8$ means that there is an $80 \%$ chance that the patient is having a cavity given that he is having a toothache.
- Conditional probabilities can be defined in terms of unconditional probabilities:

$$
P(A / B)=\frac{P(A, B)}{P(B)}=\frac{P(A, B)}{P(B)}
$$

- The following formulas can be derived (chain rule):

$$
P(A, B)=P(A / B) P(B)=P(B / A) P(A)
$$

- Using the above formula, we can rewrite the law of total probability as follows:

$$
P(A)=P(A, B)+P(A, \bar{B})=P(A / B) P(B)+P(A / \bar{B}) P(\bar{B})
$$

## - Bayes theorem

- Using the conditional probability formula leads to the Bayes rule:

$$
P(A / B)=\frac{P(B / A) P(A)}{P(B)}
$$

Example: consider the probability of Disease given Symptom

$$
P(\text { Disease } / \text { Symptom })=\frac{P(\text { Symptom } / \text { Disease }) P(\text { Disease })}{P(\text { Symptom })}
$$

$P($ Symptom $)=P($ Symptom $/$ Disease $) P($ Disease $)+P($ Symptom $/ \overline{\text { Disease }}) P(\overline{\text { Dis }-~}$ ease)

- The general form of the Bayes rule is given by:

$$
P\left(A_{i} / B\right)=\frac{P\left(B / A_{i}\right) P(A)}{P(B)}
$$

where $A_{1}, A_{2}, \ldots, A_{n}$ is a partition of mutually exclusive events and $B$ is any event

$$
P(B)=\sum_{j=1}^{n} P\left(B / A_{j}\right) P\left(A_{j}\right) \text { (law of total probability) }
$$

## - Independence

- Two events A and B are independent iff:

$$
P(A, B)=P(A) P(B)
$$

- From the above formula, we can also show that:

$$
P(A / B)=P(A) \text { and } P(B / A)=P(B)
$$

- A and B are conditionally independent given C iff:

$$
P(A / B, C)=P(A / C)
$$

- The following formula can be shown easily:

$$
P(A, B, C)=P(A / B, C) P(B / C) P(C)
$$

## - Random variables

- In many experiments, it is easier to deal with a summary variable than with the original probability structure.

Example: in an opinion poll, we ask 50 people whether agree or disagree with a certain issue.

* Suppose we record a " 1 " for agree and " 0 " for disagree.
* The sample space for this experiment has $2^{50}$ elements.
* Suppose we are only interested in the number of people who agree.
* Define the variable $X=$ number of "1"'s recorded out of 50 .
* Easier to deal with this sample space (has only 50 elements).
- A random variable (r.v.) is the value we assign to the outcome of a random experiment (i.e., a function that assigns a real number to each event).


Example: toss a coin 3 times and define X: \# of heads


- How is the probability function of the random variable is being defined from the probability function of the original sample space?
(1) Suppose the sample space is $S=\left\langle s_{1}, \ldots, s_{n}\right\rangle$
(2) Suppose the range of the random variable $X$ is $\left\langle x_{1}, \ldots, x_{m}\right\rangle$
(3) We will observe $X=x_{j}$ iff the outcome of the random experiment is an $s_{j} \in S$ such that $X\left(s_{j}\right)=x_{j}$, i.e.,

$$
P\left(X=x_{j}\right)=P\left(s_{j} \in S: X\left(s_{j}\right)=x_{j}\right.
$$

- A discrete r.v. can assume only a countable number of values (e.g., consider the experiment of throwing a pair of dice):

$$
\begin{gathered}
X=\text { "sum of dice" } \\
\text { e.g., } X=5 \text { corresponds to } A_{5}=\{(1,4),(4,1),(2,3),(3,2)\} \\
P(X=x)=P\left(A_{x}\right)=\sum_{s: X(s)=x} P(s) \text { or } \\
P(X=5)=P((1,4))+P((4,1))+P((2,3))+P((2,3))=4 / 36=1 / 9
\end{gathered}
$$

- A continuous random variable can assume a range of values (e.g., most sensor readings).


## - Why should we care about r.v.?

- Every sensor reading is a random variable (e.g., thermal noise, etc.)
- Many things in the real world can be appropriately viewed as random events (e.g., start time of lecture).
- There is some degree of uncertainty in almost everything we do.
- Some synonymous terms for "random" are stochastic and non-deterministic


## - Probability distribution function (PDF)

- With every r.v., we associate a function called probability distribution function (PDF) which is defined as follows:

$$
F(x)=P(X \leq x)
$$

- Some properties of the PDF are:
(1) $0 \leq F(x) \leq 1$
(2) $F(x)$ is a non-decreasing function of $x$
- If $X$ is discrete, its PDF can be computed as follows:

$$
F(x)=P(X \leq x)=\sum_{k=0}^{x} P(X=k)=\sum_{k=0}^{x} p(k)
$$



$$
F(0)=P(X \leq 0)=P(X=0)=1 / 8
$$

$$
F(1)=P(X \leq 1)=P(X=0)+P(X=1)=1 / 2
$$

$$
F(2)=P(X \leq 2)=P(X=0)+P(X=1)+P(X=2)=7 / 8
$$

$$
F(3)=P(X \leq 3)=P(X=0)+P(X=1)+P(X=2)+P(X=3)=1
$$

## - Probability mass (pmf) or density function (pdf)

- The pmf of a discrete r.v. $X$ assigns a probability for each possible value of $X$ :

$$
p(x)=P(X=x) \text { for all } x
$$

Important note: given two r.v.'s, $X$ and $Y$, their $p m f$ or $p d f$ are denoted as $p_{X}(x)$ and $p_{Y}(y)$; for convenience, we will drop the subscripts and denote them as $p(x)$ and $p(y)$, however, keep in mind that these functions are different!

- The $p d f$ of a continuous r.v. $X$ satisfies

$$
F(x)=\int_{-\infty}^{x} p(t) d t \text { for all } x
$$

- Using the above formula it can be shown that:

$$
p(x)=\frac{d F}{d x}(x)
$$

- Some properties of the pmf and pdf:

$$
\begin{aligned}
\sum_{x} p(x) & =1(\mathrm{pmf}) \\
P(a<X<b) & =\sum_{k=a}^{b} p(k)(\mathrm{pmf}) \\
\int_{-\infty}^{\infty} p(x) d x & =1(\mathrm{pdf}) \\
P(a<X<b) & =\int_{a}^{b} p(t) d t(\mathrm{pdf})
\end{aligned}
$$

Example: the Gaussian $p d f$ and $P D F$



## - The joint pmf and pdf

## Discrete r.v.

- For $n$ random variables, the joint $p m f$ assigns a probability for each possible combination of values:

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}\right)
$$

Important note: the joint $p m f$ 's or $p d f$ 's of the r.v.'s $X_{1}, X_{2}, \ldots, X_{n}$ and $Y_{1}$, $Y_{2}, \quad \ldots, \quad Y_{n}$ are denoted as $p_{X_{1} X_{2} \ldots X_{n}}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $p_{Y_{1} Y_{2} \ldots Y_{n}}\left(y_{1}, y_{2}, \ldots, y_{n}\right)$; for convenience, we will drop the subscripts and denote them as $p\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ and $p\left(y_{1}, y_{2}, \ldots, y_{n}\right)$, keep in mind, however, that these are two different functions.

- Specifying the joint pmf requires an enormous number of values (e.g., $k^{n}$ assuming $n$ random variables where each one can assume one of $k$ discrete values).
$P($ Cavity, Toothache $)$ is a $2 \times 2$ matrix
tab (\%) allbox center;
c s s l n n. Joint Probability \%Toothache\% not Toothache Cavity $\% 0.04 \% 0.06$ not Cavity $\% 0.01 \% 0.89$
- The univariate $p m f$ is related to the joint $p m f$ by:

$$
p(x)=\sum_{y} p(x, y) \text { (marginalization) }
$$

## Continuous r.v.

- For $n$ random variables $X_{1}, \ldots, X_{n}$, the joint $p d f$ is given by:

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq 0
$$

- The univariate $p m f$ is related to the joint $p m f$ by:

$$
p(x)=\int_{-\infty}^{\infty} p(x, y) d y \text { (marginalization) }
$$

## - Some interesting results using the joint pmf/pdf

- The conditional pdf can be derived from the joint pdf:

$$
p(y / x)=\frac{p(x, y)}{p(x)} \text { or } p(x, y)=p(y / x) p(x)
$$

- The law of total probability:

$$
p(y)=\sum_{x} p(y / x) p(x)
$$

- Knowledge about independence between r.v.'s is very powerful since it simplifies things a lot, e.g., if $X$ and $Y$ are independent, then:

$$
p(x, y)=p(x) p(y)
$$

- The chain rule of probabilities:

$$
p\left(x_{1}, x_{2}, \ldots, x_{n}\right)=p\left(x_{1} / x_{2}, \ldots, x_{n}\right) p\left(x_{2} / x_{3}, \ldots, x_{n}\right) \ldots p\left(x_{n-1} / x_{n}\right) p\left(x_{n}\right)
$$

## - Why is the joint pmf (or pdf) useful?

- Any other probability relating to the random variables can be calculated.

$$
P(B)=P(B, A)+P(B, \bar{A})(\text { marginalization })
$$

(we can compute the probability of any r.v. from its joint probability)

- Here is how to compute $P(A / B)$ (conditional probability):

$$
P(A / B)=\frac{P(A, B)}{P(B)}=\frac{P(A, B)}{P(A, B)+P(\bar{A}, B)}
$$

## - Normal (Gaussian) distribution

- The Gaussian pdf is defined as follows:

$$
p(\mathbf{x})=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

where $\mu$ is the mean and $\sigma$ the standard deviation.

- The multivariate Gaussian ( $\mathbf{x}$ is a vector) is defined as follows:

$$
p(\mathbf{x})=\frac{1}{(2 \pi)^{d / 2}|\Sigma|^{1 / 2}} \exp \left[-\frac{1}{2}(\mathbf{x}-\mu)^{t} \Sigma^{-1}(\mathbf{x}-\mu)\right]
$$

where $\mu$ is the mean and $\Sigma$ the covariance matrix.

- Linear combinations of jointly Gaussian distributed variables follow a Gaussian distribution:

$$
\text { if } \mathbf{y}=A^{t} \mathbf{x} \text {, then } p(\mathbf{y})^{\sim} N\left(A^{t} \mu, A^{t} \Sigma A\right)
$$

- Whitening transformation:

$$
A_{w}=\Phi \Lambda^{-1 / 2}
$$

$$
\text { if } \mathbf{y}=A_{w}^{t} \mathbf{x} \text {, then } p(\mathbf{y}) \sim N\left(A_{w}^{t} \mu, I\right) \text {, that is, } \Sigma_{w}=I
$$

where the columns of $\Phi$ are the (orthonormal) eigenvectors of $\Sigma$, and $\Lambda$ is a diagonal matrix corresponding to the eigenvalues of $\Sigma$


- Shape and parameters of Gaussian distribution:

$$
d+d(d+1) / 2 \text { parameters, shape determined by } \Sigma
$$



- Mahalanobis distance:

$$
r^{2}=(\mathbf{x}-\mu)^{t} \Sigma^{-1}(\mathbf{x}-\mu)
$$

- The multivariate normal distribution for independent variables becomes:

$$
p(\mathbf{x})=\Pi_{i} \frac{1}{\sqrt{2 \pi \sigma_{i}^{2}}} \exp \left[\frac{\left(x-\mu_{i}\right)^{2}}{2 \sigma_{i}^{2}}\right]
$$

<figure notes>

## - Expected value

- The expected value for a discrete r.v. $X$ is given by

$$
E(X)=\sum_{x} x p(x)
$$

Example: Let $X$ denote the outcome of a die roll

$$
E(X)=11 / 6+21 / 6+31 / 6+41 / 6+51 / 6+61 / 6=3.5
$$

- The "sample" mean $\bar{x}$ for a r.v. $X$ is given by

$$
\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

where $x_{i}$ denotes the $i$-th measurement of $X$.

- The mean and the expected value are related by

$$
E(X)=\lim _{n \rightarrow \infty} \bar{x}
$$

- The expected value for a continuous r.v. is given by

$$
E(X)=\int_{-\infty}^{\infty} x p(x) d x
$$

Example: $E(X)$ for the Gaussian is $\mu$.

## - Properties of the expected value operator

- The expected value of a function $g(X)$ is given by:

$$
\begin{gathered}
E(g(X))=\sum_{x} g(x) p(x) \text { (discrete case) } \\
E(g(X))=\int_{-\infty}^{\infty} g(x) p(x) d x \text { (continuous case) }
\end{gathered}
$$

- Linearity property

$$
E(a f(X)+b g(Y))=a E(f(X))+b E(g(Y))
$$

- Variance and standard deviation
- The variance $\operatorname{Var}(X)$ of a r.v. $X$ is defined by

$$
\operatorname{Var}(X)=E\left((X-\mu)^{2}\right), \text { where } \mu=E(X)
$$

- The "sample" variance $\overline{V a r}$ for a r.v. $X$ is given by

$$
\overline{\operatorname{Var}}(X)=\frac{1}{n-1} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}
$$

- The standard deviation $\sigma$ of a r.v. $X$ is defined by

$$
\sigma=\sqrt{\operatorname{Var}(X)}
$$

Example: The variance of the Gaussian is $\sigma^{2}$

## - Covariance

- The covariance of two r.v. $X$ and $Y$ is defined by:

$$
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]
$$

where $\mu_{X}=E(X)$ and $\mu_{Y}=E(Y)$

- The correlation coefficient $\rho_{X Y}$ between $X$ and $Y$ is given by:

$$
\rho_{X Y} a=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

- The "sample" covariance matrix is given by:

$$
\operatorname{Cov}(X, Y)=\frac{1}{n-1} \sum_{i=1}^{n-1}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

## - Covariance matrix

- The covariance matrix of 2 random variables is given by:

$$
C_{X Y}=\left[\begin{array}{ll}
\operatorname{Cov}(X, X) & \operatorname{Cov}(X, Y) \\
\operatorname{Cov}(Y, X) & \operatorname{Cov}(Y, Y)
\end{array}\right]
$$

where $\operatorname{Cov}(X, X)=\operatorname{Var}(X), \quad \operatorname{Cov}(Y, Y)=\operatorname{Var}(Y)$

- The covariance matrix of $n$ random variables is given as:

$$
\begin{gathered}
C_{X}=\left[\begin{array}{cccc}
\operatorname{Cov}\left(X_{1}, X_{1}\right) & \operatorname{Cov}\left(X_{1}, X_{2}\right) & \ldots & \operatorname{Cov}\left(X_{1}, X_{n}\right) \\
\operatorname{Cov}\left(X_{2}, X_{1}\right) & \operatorname{Cov}\left(X_{2}, X_{2}\right) & \ldots & \operatorname{Cov}\left(X_{2}, X_{n}\right) \\
\ldots & \ldots & \ldots & \ldots \\
\operatorname{Cov}\left(X_{n}, X_{1}\right) & \operatorname{Cov}\left(X_{n}, X_{2}\right) & \ldots & \operatorname{Cov}\left(X_{n}, X_{n}\right)
\end{array}\right] \\
\text { where } \operatorname{Cov}\left(X_{i}, X_{j}\right)=\operatorname{Cov}\left(X_{j}, X_{i}\right) \text { and } \operatorname{Cov}\left(X_{i}, X_{i}\right) \geq 0
\end{gathered}
$$

Example: $\Sigma$ is the covariance matrix of the multivariate Gaussian.

## - Uncorrelated random variables

- $X$ and $Y$ are called uncorrelated, if:

$$
\operatorname{Cov}(X, Y)=0
$$

- $X_{1}, X_{2}, \ldots, X_{n}$ are called uncorrelated, if:

$$
C_{X}=\Lambda, \quad \text { where } \Lambda \text { is a diagonal matrix. }
$$

## - Properties of the covariance matrix

- Since $C_{X}$ is symmetric, it has real eigenvalues $\geq 0$
- Any two eigenvectors, with different eigenvalues, are orthogonal.
- The eigenvectors corresponding to different eigenvalues define a basis.


## - Decomposition of the covariance matrix

- The covariance matrix $C_{X}$ can be decomposed as follows:

$$
C_{X}=\Phi \Lambda \Phi^{-1}
$$

(1) the columns of $\Phi$ are the eigenvectors of $C_{X}$
(2) the diagonal elements of $\Lambda$ are the eigenvalues of $C_{X}$

## - Transformations between random variables

- Suppose $X$ and $Y$ are vectors of random variables:

$$
X=\left[\begin{array}{c}
X_{1} \\
X_{2} \\
\ldots \\
X_{n}
\end{array}\right], \quad Y=\left[\begin{array}{c}
Y_{1} \\
Y_{2} \\
\ldots \\
Y_{n}
\end{array}\right]
$$

which are related through the following transformation:

$$
Y=\Phi^{T} X
$$

- The coordinates of $Y$ are uncorrelated:

$$
C_{Y}=\Lambda \quad \text { (i.e., } \operatorname{Cov}\left(Y_{i}, Y_{j}\right)=0 \text { ) }
$$

- The eigenvalues of $C_{X}$ become the variances of $Y_{i}$ 's:

$$
\operatorname{Var}\left(Y_{i}\right)=\operatorname{Cov}\left(Y_{i}, Y_{i}\right)=\lambda_{i}
$$

## - Moments of a r.v.

- Definition of moments:

$$
m_{n}=E\left(x^{n}\right)
$$

- Definition of central moments:

$$
c m_{n}=E\left((x-\mu)^{n}\right)
$$

- Useful moments
$m_{1}$ : mean
$\mathrm{cm}_{2}$ : variance
$\mathrm{Cm}_{3}$ : skewness (measure of asymmetry of a distribution)
$\mathrm{Cm}_{4}$ : kurtosis (detects heave and light tails and deformations of a distribution)

